IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15000-w.html
   My bibliography  Save this article

TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts

Author

Listed:
  • John Fielden

    (University of Oxford)

  • Katherine Wiseman

    (University of Oxford)

  • Ignacio Torrecilla

    (University of Oxford)

  • Shudong Li

    (University of Oxford)

  • Samuel Hume

    (University of Oxford)

  • Shih-Chieh Chiang

    (University of Sheffield)

  • Annamaria Ruggiano

    (University of Oxford)

  • Abhay Narayan Singh

    (University of Oxford)

  • Raimundo Freire

    (Hospital Universitario de Canarias, Ofra s/n, La Cuesta
    Universidad de La Laguna
    Universidad Fernando Pessoa Canarias)

  • Sylvana Hassanieh

    (University of Oxford)

  • Enric Domingo

    (University of Oxford)

  • Iolanda Vendrell

    (University of Oxford
    University of Oxford)

  • Roman Fischer

    (University of Oxford)

  • Benedikt M. Kessler

    (University of Oxford)

  • Timothy S. Maughan

    (University of Oxford)

  • Sherif F. El-Khamisy

    (University of Sheffield)

  • Kristijan Ramadan

    (University of Oxford)

Abstract

Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediate—a covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)—is stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs. A critical enzyme for TOP1cc resolution is the tyrosyl-DNA phosphodiesterase (TDP1), which hydrolyses the bond that links a tyrosine in the active site of TOP1 to a 3’ phosphate group on a single-stranded (ss)DNA break. However, TDP1 can only process small peptide fragments from ssDNA ends, raising the question of how the ~90 kDa TOP1 protein is processed upstream of TDP1. Here we find that TEX264 fulfils this role by forming a complex with the p97 ATPase and the SPRTN metalloprotease. We show that TEX264 recognises both unmodified and SUMO1-modifed TOP1 and initiates TOP1cc repair by recruiting p97 and SPRTN. TEX264 localises to the nuclear periphery, associates with DNA replication forks, and counteracts TOP1ccs during DNA replication. Altogether, our study elucidates the existence of a specialised repair complex required for upstream proteolysis of TOP1ccs and their subsequent resolution.

Suggested Citation

  • John Fielden & Katherine Wiseman & Ignacio Torrecilla & Shudong Li & Samuel Hume & Shih-Chieh Chiang & Annamaria Ruggiano & Abhay Narayan Singh & Raimundo Freire & Sylvana Hassanieh & Enric Domingo & , 2020. "TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15000-w
    DOI: 10.1038/s41467-020-15000-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15000-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15000-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marika K. Kucińska & Juliette Fedry & Carmela Galli & Diego Morone & Andrea Raimondi & Tatiana Soldà & Friedrich Förster & Maurizio Molinari, 2023. "TMX4-driven LINC complex disassembly and asymmetric autophagy of the nuclear envelope upon acute ER stress," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Pedro Weickert & Hao-Yi Li & Maximilian J. Götz & Sophie Dürauer & Denitsa Yaneva & Shubo Zhao & Jacqueline Cordes & Aleida C. Acampora & Ignasi Forne & Axel Imhof & Julian Stingele, 2023. "SPRTN patient variants cause global-genome DNA-protein crosslink repair defects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Yilun Sun & Simone A. Baechler & Xiaohu Zhang & Suresh Kumar & Valentina M. Factor & Yasuhiro Arakawa & Cindy H. Chau & Kanako Okamoto & Anup Parikh & Bob Walker & Yijun P. Su & Jiji Chen & Tabitha Ti, 2023. "Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15000-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.