IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14892-y.html
   My bibliography  Save this article

Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage

Author

Listed:
  • Kecheng Jie

    (The University of Tennessee
    Oak Ridge National Laboratory)

  • Yujuan Zhou

    (Zhejiang University)

  • Qi Sun

    (Zhejiang University)

  • Bo Li

    (University of California)

  • Run Zhao

    (Zhejiang University)

  • De-en Jiang

    (University of California)

  • Wei Guo

    (The University of Tennessee
    Oak Ridge National Laboratory)

  • Hao Chen

    (The University of Tennessee
    Zhejiang University)

  • Zhenzhen Yang

    (The University of Tennessee
    Oak Ridge National Laboratory)

  • Feihe Huang

    (Zhejiang University)

  • Sheng Dai

    (The University of Tennessee
    Oak Ridge National Laboratory)

Abstract

The incorporation of supramolecular macrocycles into porous organic polymers may endow the material with enhanced uptake of specific guests through host−guest interactions. Here we report a solvent and catalyst-free mechanochemical synthesis of pillar[5]quinone (P5Q) derived multi-microporous organic polymers with hydrophenazine linkages (MHP-P5Q), which show a unique 3-step N2 adsorption isotherm. In comparison with analogous microporous hydrophenazine-linked organic polymers (MHPs) obtained using simple twofold benzoquinones, MHP-P5Q is demonstrated to have a superior performance in radioactive iodomethane (CH3I) capture and storage. Mechanistic studies show that the rigid pillar[5]arene cavity has additional binding sites though host−guest interactions as well as the halogen bond (−I⋯N = C−) and chemical adsorption in the multi-microporous MHP-P5Q mainly account for the rapid and high-capacity adsorption and long-term storage of CH3I.

Suggested Citation

  • Kecheng Jie & Yujuan Zhou & Qi Sun & Bo Li & Run Zhao & De-en Jiang & Wei Guo & Hao Chen & Zhenzhen Yang & Feihe Huang & Sheng Dai, 2020. "Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14892-y
    DOI: 10.1038/s41467-020-14892-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14892-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14892-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinghui Xie & Qiuyu Rong & Fengyi Mao & Shiyu Wang & You Wu & Xiaolu Liu & Mengjie Hao & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Shengqian Ma & Xiangke Wang, 2024. "Engineering the pore environment of antiparallel stacked covalent organic frameworks for capture of iodine pollutants," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Liangxiao Tan & Jun-Hao Zhou & Jian-Ke Sun & Jiayin Yuan, 2022. "Electrostatically cooperative host-in-host of metal cluster ⊂ ionic organic cages in nanopores for enhanced catalysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Tingting Pan & Kaijie Yang & Xinglong Dong & Shouwei Zuo & Cailing Chen & Guanxing Li & Abdul-Hamid Emwas & Huabin Zhang & Yu Han, 2024. "Strategies for high-temperature methyl iodide capture in azolate-based metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14892-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.