IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14837-5.html
   My bibliography  Save this article

Towards a more effective climate policy on international trade

Author

Listed:
  • Erik Dietzenbacher

    (University of Groningen, Faculty of Economics and Business, PO Box 800)

  • Ignacio Cazcarro

    (University of Zaragoza
    Scientific Park of the University of the Basque Country (UPV/EHU), Edificio Sede 1, Planta 1ª | Parque Científico de UPV/EHU)

  • Iñaki Arto

    (Scientific Park of the University of the Basque Country (UPV/EHU), Edificio Sede 1, Planta 1ª | Parque Científico de UPV/EHU)

Abstract

In the literature on the attribution of responsibilities for greenhouse gas emissions, two accounting methods have been widely discussed: production-based accounting (PBA) and consumption-based accounting (CBA). It has been argued that an accounting framework for attributing responsibilities should credit actions contributing to reduce global emissions and should penalize actions increasing them. Neither PBA nor CBA satisfy this principle. Adapting classical Ricardian trade theory, we consider ex post measurement and propose a scheme for assigning credits and penalties. Their size is determined by how much CO2 emissions are saved globally due to trade. This leads to the emission responsibility allotment (ERA) for assigning responsibilities. We illustrate the differences between ERA and PBA and CBA by comparing their results for 41 countries and regions between 1995–2009. The Paris Agreement (COP21) proposed new market mechanisms; we argue that ERA is well suited to measure and evaluate their overall mitigation impact.

Suggested Citation

  • Erik Dietzenbacher & Ignacio Cazcarro & Iñaki Arto, 2020. "Towards a more effective climate policy on international trade," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14837-5
    DOI: 10.1038/s41467-020-14837-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14837-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14837-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maeno, Keitaro, 2023. "Identifying critical sectors in the restructuring of low-carbon global supply chains," Energy Economics, Elsevier, vol. 127(PA).
    2. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    3. Wu, Ran & Ma, Tao & Schröder, Enno, 2022. "The contribution of trade to production-Based carbon dioxide emissions," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 391-406.
    4. Huang, Rui & Lv, Guonian, 2021. "The climate economic effect of technology spillover," Energy Policy, Elsevier, vol. 159(C).
    5. He, Kehan & Mi, Zhifu & Coffman, D'Maris & Guan, Dabo, 2022. "Using a linear regression approach to sequential interindustry model for time-lagged economic impact analysis," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 399-406.
    6. Jingke, Hong & Chenyu, Wang & Chang-Richards, Alice & Jingxiao, Zhang & Qiping, Geoffrey Shen & Bei, Qiao, 2022. "A spatiotemporal analysis of energy use pathways in the construction industry: A study of China," Energy, Elsevier, vol. 239(PC).
    7. Huang, He & Hong, Jingke & Wang, Xianzhu & Chang-Richards, Alice & Zhang, Jingxiao & Qiao, Bei, 2022. "A spatiotemporal analysis of the driving forces behind the energy interactions of the Chinese economy: Evidence from static and dynamic perspectives," Energy, Elsevier, vol. 239(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14837-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.