IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14822-y.html
   My bibliography  Save this article

Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells

Author

Listed:
  • Gurong Shen

    (Tianjin University)

  • Jing Liu

    (University of California)

  • Hao Bin Wu

    (Zhejiang University)

  • Pengcheng Xu

    (University of California)

  • Fang Liu

    (University of California)

  • Chasen Tongsh

    (Tianjin University)

  • Kui Jiao

    (Tianjin University)

  • Jinlai Li

    (ENN Technology and Development Co. Ltd.)

  • Meilin Liu

    (Georgia Institute of Technology)

  • Mei Cai

    (General Motors Research and Development Center)

  • John P. Lemmon

    (Advanced Research Projects Agency-Energy)

  • Grigorii Soloveichik

    (Advanced Research Projects Agency-Energy)

  • Hexing Li

    (Shanghai Normal University)

  • Jian Zhu

    (Shanghai Normal University)

  • Yunfeng Lu

    (University of California)

Abstract

Proton exchange membrane fuel cells have been regarded as the most promising candidate for fuel cell vehicles and tools. Their broader adaption, however, has been impeded by cost and lifetime. By integrating a thin layer of tungsten oxide within the anode, which serves as a rapid-response hydrogen reservoir, oxygen scavenger, sensor for power demand, and regulator for hydrogen-disassociation reaction, we herein report proton exchange membrane fuel cells with significantly enhanced power performance for transient operation and low humidified conditions, as well as improved durability against adverse operating conditions. Meanwhile, the enhanced power performance minimizes the use of auxiliary energy-storage systems and reduces costs. Scale fabrication of such devices can be readily achieved based on the current fabrication techniques with negligible extra expense. This work provides proton exchange membrane fuel cells with enhanced power performance, improved durability, prolonged lifetime, and reduced cost for automotive and other applications.

Suggested Citation

  • Gurong Shen & Jing Liu & Hao Bin Wu & Pengcheng Xu & Fang Liu & Chasen Tongsh & Kui Jiao & Jinlai Li & Meilin Liu & Mei Cai & John P. Lemmon & Grigorii Soloveichik & Hexing Li & Jian Zhu & Yunfeng Lu, 2020. "Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14822-y
    DOI: 10.1038/s41467-020-14822-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14822-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14822-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabbi Wilberforce & Mohammad Biswas & Abdelnasir Omran, 2022. "Power and Voltage Modelling of a Proton-Exchange Membrane Fuel Cell Using Artificial Neural Networks," Energies, MDPI, vol. 15(15), pages 1-15, August.
    2. Li, Zheng & Wang, Yameng & Mu, Yongbiao & Wu, Buke & Jiang, Yuting & Zeng, Lin & Zhao, Tianshou, 2023. "Recent advances in the anode catalyst layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).
    4. Shu, Qingzhu & Shi, Jiefu & Li, Zhuxin & Xing, Danmin & Sun, Xin & Zhang, Yong & Song, Shuqin & Tang, Yu & Yang, Shuxiu & Gao, Han & Xia, Chuxuan & Zhao, Mingming & Li, Xufeng & Zhao, Hong, 2024. "Failure of Au-coated metallic bipolar plates for fuel cell in a 3-kW stack under the new European driving cycle," Applied Energy, Elsevier, vol. 355(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14822-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.