IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14779-y.html
   My bibliography  Save this article

Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics

Author

Listed:
  • Wen-Biao Jiao

    (Max Planck Institute for Plant Breeding Research, Department of Chromosome Biology)

  • Korbinian Schneeberger

    (Max Planck Institute for Plant Breeding Research, Department of Chromosome Biology
    Faculty of Biology, LMU Munich)

Abstract

Despite hundreds of sequenced Arabidopsis genomes, very little is known about the degree of genomic collinearity within single species, due to the low number of chromosome-level assemblies. Here, we report chromosome-level reference-quality assemblies of seven Arabidopsis thaliana accessions selected across its global range. Each genome reveals between 13–17 Mb rearranged, and 5–6 Mb non-reference sequences introducing copy-number changes in ~5000 genes, including ~1900 non-reference genes. Quantifying the collinearity between the genomes reveals ~350 euchromatic regions, where accession-specific tandem duplications destroy the collinearity between the genomes. These hotspots of rearrangements are characterized by reduced meiotic recombination in hybrids and genes implicated in biotic stress response. This suggests that hotspots of rearrangements undergo altered evolutionary dynamics, as compared to the rest of the genome, which are mostly based on the accumulation of new mutations and not on the recombination of existing variation, and thereby enable a quick response to the biotic stress.

Suggested Citation

  • Wen-Biao Jiao & Korbinian Schneeberger, 2020. "Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14779-y
    DOI: 10.1038/s41467-020-14779-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14779-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14779-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Maja Szymanska-Lejman & Wojciech Dziegielewski & Julia Dluzewska & Nadia Kbiri & Anna Bieluszewska & R. Scott Poethig & Piotr A. Ziolkowski, 2023. "The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Ting Wang & Shiyao Duan & Chen Xu & Yi Wang & Xinzhong Zhang & Xuefeng Xu & Liyang Chen & Zhenhai Han & Ting Wu, 2023. "Pan-genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Minghui Kang & Haolin Wu & Huanhuan Liu & Wenyu Liu & Mingjia Zhu & Yu Han & Wei Liu & Chunlin Chen & Yan Song & Luna Tan & Kangqun Yin & Yusen Zhao & Zhen Yan & Shangling Lou & Yanjun Zan & Jianquan , 2023. "The pan-genome and local adaptation of Arabidopsis thaliana," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Mohamed Awad & Xiangchao Gan, 2023. "GALA: a computational framework for de novo chromosome-by-chromosome assembly with long reads," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14779-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.