Author
Listed:
- Elizabeth M. McNeill
(Harvard Medical School
Iowa State University)
- Chloe Warinner
(Harvard Medical School)
- Stephen Alkins
(Brandeis University)
- Alicia Taylor
(Harvard Medical School
Iowa State University)
- Hansine Heggeness
(Harvard Medical School)
- Todd F. DeLuca
(Harvard Medical School)
- Tudor A. Fulga
(Harvard Medical School
Oxford University)
- Dennis P. Wall
(Stanford University)
- Leslie C. Griffith
(Brandeis University)
- David Vactor
(Harvard Medical School)
Abstract
Micro(mi)RNA-based post-transcriptional regulatory mechanisms have been broadly implicated in the assembly and modulation of synaptic connections required to shape neural circuits, however, relatively few specific miRNAs have been identified that control synapse formation. Using a conditional transgenic toolkit for competitive inhibition of miRNA function in Drosophila, we performed an unbiased screen for novel regulators of synapse morphogenesis at the larval neuromuscular junction (NMJ). From a set of ten new validated regulators of NMJ growth, we discovered that miR-34 mutants display synaptic phenotypes and cell type-specific functions suggesting distinct downstream mechanisms in the presynaptic and postsynaptic compartments. A search for conserved downstream targets for miR-34 identified the junctional receptor CNTNAP4/Neurexin-IV (Nrx-IV) and the membrane cytoskeletal effector Adducin/Hu-li tai shao (Hts) as proteins whose synaptic expression is restricted by miR-34. Manipulation of miR-34, Nrx-IV or Hts-M function in motor neurons or muscle supports a model where presynaptic miR-34 inhibits Nrx-IV to influence active zone formation, whereas, postsynaptic miR-34 inhibits Hts to regulate the initiation of bouton formation from presynaptic terminals.
Suggested Citation
Elizabeth M. McNeill & Chloe Warinner & Stephen Alkins & Alicia Taylor & Hansine Heggeness & Todd F. DeLuca & Tudor A. Fulga & Dennis P. Wall & Leslie C. Griffith & David Vactor, 2020.
"The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells,"
Nature Communications, Nature, vol. 11(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14761-8
DOI: 10.1038/s41467-020-14761-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14761-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.