IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14748-5.html
   My bibliography  Save this article

An organic/inorganic electrode-based hydronium-ion battery

Author

Listed:
  • Zhaowei Guo

    (Fudan University)

  • Jianhang Huang

    (Fudan University)

  • Xiaoli Dong

    (Fudan University)

  • Yongyao Xia

    (Fudan University)

  • Lei Yan

    (Fudan University)

  • Zhuo Wang

    (Fudan University)

  • Yonggang Wang

    (Fudan University)

Abstract

Hydronium-ion batteries are regarded as one of the most promising energy technologies as next-generation power sources, benefiting from their cost effectivity and sustainability merits. Herein, we propose a hydronium-ion battery which is based on an organic pyrene-4,5,9,10-tetraone anode and an inorganic MnO2@graphite felt cathode in an acid electrolyte. Its operation involves a quinone/hydroquinone redox reaction on anode and a MnO2/Mn2+ conversion reaction on cathode, in parallel with the transfer of H3O+ between two electrodes. The distinct operation mechanism affords this hydronium-ion battery an energy density up to 132.6 Wh kg−1 and a supercapacitor-comparable power density of 30.8 kW kg−1, along with a long-term cycling life over 5000 cycles. Furthermore, surprisingly, this hydronium-ion battery works well even with a frozen electrolyte under −40 °C, and superior rate performance and cycle stability remain at −70 °C.

Suggested Citation

  • Zhaowei Guo & Jianhang Huang & Xiaoli Dong & Yongyao Xia & Lei Yan & Zhuo Wang & Yonggang Wang, 2020. "An organic/inorganic electrode-based hydronium-ion battery," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14748-5
    DOI: 10.1038/s41467-020-14748-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14748-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14748-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Fei Lv & Jiazhe Wu & Xuan Liu & Zhihao Zheng & Lixia Pan & Xuewen Zheng & Liejin Guo & Yubin Chen, 2024. "Decoupled electrolysis for hydrogen production and hydrazine oxidation via high-capacity and stable pre-protonated vanadium hexacyanoferrate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14748-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.