IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14667-5.html
   My bibliography  Save this article

Inference and effects of barcode multiplets in droplet-based single-cell assays

Author

Listed:
  • Caleb A. Lareau

    (Harvard University
    Broad Institute of MIT and Harvard
    Harvard Medical School)

  • Sai Ma

    (Harvard University
    Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

  • Fabiana M. Duarte

    (Harvard University
    Broad Institute of MIT and Harvard)

  • Jason D. Buenrostro

    (Harvard University
    Broad Institute of MIT and Harvard)

Abstract

A widespread assumption for single-cell analyses specifies that one cell’s nucleic acids are predominantly captured by one oligonucleotide barcode. Here, we show that ~13–21% of cell barcodes from the 10x Chromium scATAC-seq assay may have been derived from a droplet with more than one oligonucleotide sequence, which we call “barcode multiplets”. We demonstrate that barcode multiplets can be derived from at least two different sources. First, we confirm that approximately 4% of droplets from the 10x platform may contain multiple beads. Additionally, we find that approximately 5% of beads may contain detectable levels of multiple oligonucleotide barcodes. We show that this artifact can confound single-cell analyses, including the interpretation of clonal diversity and proliferation of intra-tumor lymphocytes. Overall, our work provides a conceptual and computational framework to identify and assess the impacts of barcode multiplets in single-cell data.

Suggested Citation

  • Caleb A. Lareau & Sai Ma & Fabiana M. Duarte & Jason D. Buenrostro, 2020. "Inference and effects of barcode multiplets in droplet-based single-cell assays," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14667-5
    DOI: 10.1038/s41467-020-14667-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14667-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14667-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhao Li & Manoj K. Jaiswal & Jo-Fan Chien & Alexey Kozlenkov & Jinyoung Jung & Ping Zhou & Mahammad Gardashli & Luc J. Pregent & Erica Engelberg-Cook & Dennis W. Dickson & Veronique V. Belzil & Eran, 2023. "Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Zhu, Guang & Lin, Zhenhua, 2021. "Commentary on statistical mechanical models of cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14667-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.