IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14525-4.html
   My bibliography  Save this article

FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism

Author

Listed:
  • Xin Chen

    (Chalmers University of Technology
    Chalmers University of Technology)

  • Boyang Ji

    (Chalmers University of Technology
    Chalmers University of Technology)

  • Xinxin Hao

    (University of Gothenburg)

  • Xiaowei Li

    (Chalmers University of Technology)

  • Frederik Eisele

    (University of Gothenburg)

  • Thomas Nyström

    (University of Gothenburg)

  • Dina Petranovic

    (Chalmers University of Technology
    Chalmers University of Technology)

Abstract

Alzheimer’s disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-β peptides (Aβ) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aβ42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aβ42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aβ42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.

Suggested Citation

  • Xin Chen & Boyang Ji & Xinxin Hao & Xiaowei Li & Frederik Eisele & Thomas Nyström & Dina Petranovic, 2020. "FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14525-4
    DOI: 10.1038/s41467-020-14525-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14525-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14525-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feiran Li & Yu Chen & Qi Qi & Yanyan Wang & Le Yuan & Mingtao Huang & Ibrahim E. Elsemman & Amir Feizi & Eduard J. Kerkhoven & Jens Nielsen, 2022. "Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14525-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.