IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14434-6.html
   My bibliography  Save this article

Ultracompact 3D microfluidics for time-resolved structural biology

Author

Listed:
  • Juraj Knoška

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Luigi Adriano

    (Deutsches Elektronen-Synchrotron
    EuXFEL, Sample Environment & Characterization Group)

  • Salah Awel

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Kenneth R. Beyerlein

    (Deutsches Elektronen-Synchrotron DESY
    Max Planck Institute for the Structure and Dynamics of Matter)

  • Oleksandr Yefanov

    (Deutsches Elektronen-Synchrotron DESY)

  • Dominik Oberthuer

    (Deutsches Elektronen-Synchrotron DESY)

  • Gisel E. Peña Murillo

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Nils Roth

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Iosifina Sarrou

    (Deutsches Elektronen-Synchrotron DESY)

  • Pablo Villanueva-Perez

    (Deutsches Elektronen-Synchrotron DESY
    Lund University)

  • Max O. Wiedorn

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Fabian Wilde

    (Institut für Werkstoffforschung)

  • Saša Bajt

    (Deutsches Elektronen-Synchrotron)

  • Henry N. Chapman

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg
    Universität Hamburg)

  • Michael Heymann

    (Deutsches Elektronen-Synchrotron DESY
    Universität Stuttgart)

Abstract

To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s−1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.

Suggested Citation

  • Juraj Knoška & Luigi Adriano & Salah Awel & Kenneth R. Beyerlein & Oleksandr Yefanov & Dominik Oberthuer & Gisel E. Peña Murillo & Nils Roth & Iosifina Sarrou & Pablo Villanueva-Perez & Max O. Wiedorn, 2020. "Ultracompact 3D microfluidics for time-resolved structural biology," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14434-6
    DOI: 10.1038/s41467-020-14434-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14434-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14434-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14434-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.