IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14399-6.html
   My bibliography  Save this article

Stretchable fabric generates electric power from woven thermoelectric fibers

Author

Listed:
  • Tingting Sun

    (College of Materials Science and Engineering, Donghua University)

  • Beiying Zhou

    (College of Materials Science and Engineering, Donghua University
    Ministry of Education, Donghua University)

  • Qi Zheng

    (College of Materials Science and Engineering, Donghua University)

  • Lianjun Wang

    (College of Materials Science and Engineering, Donghua University)

  • Wan Jiang

    (College of Materials Science and Engineering, Donghua University
    Ministry of Education, Donghua University)

  • Gerald Jeffrey Snyder

    (Northwestern University)

Abstract

Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into π-type thermoelectric modules. Utilizing elasticity originating from interlocked thermoelectric modules, stretchable 3D thermoelectric generators without substrate can be made to enable sufficient alignment with the heat flow direction. The textile generator shows a peak power density of 70 mWm−2 for a temperature difference of 44 K and excellent stretchability (~80% strain) with no output degradation. The compatibility between body movement and sustained power supply is further displayed. The generators described here are true textiles, proving active thermoelectrics can be woven into various fabric architectures for sensing, energy harvesting, or thermal management.

Suggested Citation

  • Tingting Sun & Beiying Zhou & Qi Zheng & Lianjun Wang & Wan Jiang & Gerald Jeffrey Snyder, 2020. "Stretchable fabric generates electric power from woven thermoelectric fibers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14399-6
    DOI: 10.1038/s41467-020-14399-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14399-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14399-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    2. Lianhui Li & Sijia Feng & Yuanyuan Bai & Xianqing Yang & Mengyuan Liu & Mingming Hao & Shuqi Wang & Yue Wu & Fuqin Sun & Zheng Liu & Ting Zhang, 2022. "Enhancing hydrovoltaic power generation through heat conduction effects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    4. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Yan Liu & Qihao Zhang & Aibin Huang & Keyi Zhang & Shun Wan & Hongyi Chen & Yuntian Fu & Wusheng Zuo & Yongzhe Wang & Xun Cao & Lianjun Wang & Uli Lemmer & Wan Jiang, 2024. "Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14399-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.