IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14352-7.html
   My bibliography  Save this article

Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig

Author

Listed:
  • Yulia Rubanova

    (University of Toronto
    Vector Institute)

  • Ruian Shi

    (University of Toronto)

  • Caitlin F. Harrigan

    (University of Toronto
    Vector Institute
    University of Toronto)

  • Roujia Li

    (University of Toronto)

  • Jeff Wintersinger

    (University of Toronto
    Vector Institute
    University of Toronto)

  • Nil Sahin

    (Vector Institute
    University of Toronto
    University of Toronto)

  • Amit G. Deshwar

    (University of Toronto)

  • Quaid D. Morris

    (Vector Institute
    University of Toronto)

Abstract

The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3–5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.

Suggested Citation

  • Yulia Rubanova & Ruian Shi & Caitlin F. Harrigan & Roujia Li & Jeff Wintersinger & Nil Sahin & Amit G. Deshwar & Quaid D. Morris, 2020. "Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14352-7
    DOI: 10.1038/s41467-020-14352-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14352-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14352-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Georgeson & Tabitha A. Harrison & Bernard J. Pope & Syed H. Zaidi & Conghui Qu & Robert S. Steinfelder & Yi Lin & Jihoon E. Joo & Khalid Mahmood & Mark Clendenning & Romy Walker & Efrat L. Amita, 2022. "Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sujath Abbas & Oriol Pich & Ginny Devonshire & Shahriar A. Zamani & Annalise Katz-Summercorn & Sarah Killcoyne & Calvin Cheah & Barbara Nutzinger & Nicola Grehan & Nuria Lopez-Bigas & Rebecca C. Fitzg, 2023. "Mutational signature dynamics shaping the evolution of oesophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14352-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.