IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14226-7.html
   My bibliography  Save this article

Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence

Author

Listed:
  • Ross Sager

    (University of Delaware)

  • Xu Wang

    (University of Delaware
    Universität Hohenheim)

  • Kristine Hill

    (University of Nottingham
    Universität Tübingen)

  • Byung-Chun Yoo

    (Christina Health Care System)

  • Jeffery Caplan

    (University of Delaware
    University of Delaware
    University of Delaware)

  • Alex Nedo

    (University of Delaware)

  • Thu Tran

    (University of Delaware)

  • Malcolm J. Bennett

    (University of Nottingham)

  • Jung-Youn Lee

    (University of Delaware
    University of Delaware
    University of Delaware)

Abstract

Lateral roots originate from initial cells deep within the main root and must emerge through several overlying layers. Lateral root emergence requires the outgrowth of the new primordium (LRP) to coincide with the timely separation of overlying root cells, a developmental program coordinated by the hormone auxin. Here, we report that in Arabidopsis thaliana roots, auxin controls the spatiotemporal expression of the plasmodesmal regulator PDLP5 in cells overlying LRP, creating a negative feedback loop. PDLP5, which functions to restrict the cell-to-cell movement of signals via plasmodesmata, is induced by auxin in cells overlying LRP in a progressive manner. PDLP5 localizes to plasmodesmata in these cells and negatively impacts organ emergence as well as overall root branching. We present a model, incorporating the spatiotemporal expression of PDLP5 in LRP-overlying cells into known auxin-regulated LRP-overlying cell separation pathways, and speculate how PDLP5 may function to negatively regulate the lateral root emergence process.

Suggested Citation

  • Ross Sager & Xu Wang & Kristine Hill & Byung-Chun Yoo & Jeffery Caplan & Alex Nedo & Thu Tran & Malcolm J. Bennett & Jung-Youn Lee, 2020. "Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14226-7
    DOI: 10.1038/s41467-019-14226-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14226-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14226-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Pierre Platre & Santosh B. Satbhai & Lukas Brent & Matias F. Gleason & Min Cao & Magali Grison & Marie Glavier & Ling Zhang & Christophe Gaillochet & Christian Goeschl & Marco Giovannetti & B, 2022. "The receptor kinase SRF3 coordinates iron-level and flagellin dependent defense and growth responses in plants," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14226-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.