Author
Listed:
- Philipp Brand
(University of California
The Rockefeller University)
- Ismael A. Hinojosa-Díaz
(Universidad Nacional Autónoma de México, Tercer Circuito s/n Ciudad Universitaria Delegación Coyoacán)
- Ricardo Ayala
(Universidad Nacional Autónoma de México)
- Michael Daigle
(University of California)
- Carmen L. Yurrita Obiols
(Universidad de San Carlos de Guatemala)
- Thomas Eltz
(Ruhr University Bochum)
- Santiago R. Ramírez
(University of California)
Abstract
Sexual signaling is an important reproductive barrier known to evolve early during the formation of new species, but the genetic mechanisms that facilitate the divergence of sexual signals remain elusive. Here we isolate a gene linked to the rapid evolution of a signaling trait in a pair of nascent neotropical orchid bee lineages, Euglossa dilemma and E. viridissima. Male orchid bees acquire chemical compounds from their environment to concoct species-specific perfumes to later expose during courtship. We find that the two lineages acquire chemically distinct perfumes and are reproductively isolated despite low levels of genome-wide differentiation. Remarkably, variation in perfume chemistry coincides with rapid divergence in few odorant receptor (OR) genes. Using functional assays, we demonstrate that the derived variant of Or41 in E. dilemma is specific towards its species-specific major perfume compound, whereas the ancestral variant in E. viridissima is broadly tuned to multiple odorants. Our results show that OR evolution likely played a role in the divergence of sexual communication in natural populations.
Suggested Citation
Philipp Brand & Ismael A. Hinojosa-Díaz & Ricardo Ayala & Michael Daigle & Carmen L. Yurrita Obiols & Thomas Eltz & Santiago R. Ramírez, 2020.
"The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees,"
Nature Communications, Nature, vol. 11(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14162-6
DOI: 10.1038/s41467-019-14162-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14162-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.