IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14113-1.html
   My bibliography  Save this article

Gold endowments of porphyry deposits controlled by precipitation efficiency

Author

Listed:
  • Massimo Chiaradia

    (University of Geneva Rue des Maraîchers 13)

Abstract

Porphyry deposits are natural suppliers of most copper and significant gold to our society. Whereas the Cu-richest (Au-poor) porphyries are related to Andean-type subduction and typical calc-alkaline magmatism, the Au-richest porphyries are associated with high-K calc-alkaline to alkaline magmatism in late to post-subduction or post-collision and extensional settings, and subordinately with calc-alkaline magmatism. The reasons behind these associations and the large variations in metal endowments of porphyry Cu–Au deposits remain obscure. Here, I show that porphyry Cu–Au deposits define two distinct trends in Au vs. Cu tonnage plots (Cu-rich and Au-rich). Metal endowments for both trends grow larger the longer the mineralization process. However, Au is precipitated at much higher rates in Au-rich than in Cu-rich porphyry deposits. Using Monte Carlo simulations of petrologic processes, I show that whereas Cu-rich porphyries require large amounts of magma and water to be formed, Au-rich porphyries are the result of a better efficiency of Au precipitation.

Suggested Citation

  • Massimo Chiaradia, 2020. "Gold endowments of porphyry deposits controlled by precipitation efficiency," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14113-1
    DOI: 10.1038/s41467-019-14113-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14113-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14113-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14113-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.