IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13891-y.html
   My bibliography  Save this article

Chromatin fibers stabilize nucleosomes under torsional stress

Author

Listed:
  • Artur Kaczmarczyk

    (Leiden University
    Delft University of Technology
    Imperial College London)

  • He Meng

    (Leiden University)

  • Orkide Ordu

    (Delft University of Technology)

  • John van Noort

    (Leiden University)

  • Nynke H. Dekker

    (Delft University of Technology)

Abstract

Torsional stress generated during DNA replication and transcription has been suggested to facilitate nucleosome unwrapping and thereby the progression of polymerases. However, the propagation of twist in condensed chromatin remains yet unresolved. Here, we measure how force and torque impact chromatin fibers with a nucleosome repeat length of 167 and 197. We find that both types of fibers fold into a left-handed superhelix that can be stabilized by positive torsion. We observe that the structural changes induced by twist were reversible, indicating that chromatin has a large degree of elasticity. Our direct measurements of torque confirmed the hypothesis of chromatin fibers as a twist buffer. Using a statistical mechanics-based torsional spring model, we extracted values of the chromatin twist modulus and the linking number per stacked nucleosome that were in good agreement with values measured here experimentally. Overall, our findings indicate that the supercoiling generated by DNA-processing enzymes, predicted by the twin-supercoiled domain model, can be largely accommodated by the higher-order structure of chromatin.

Suggested Citation

  • Artur Kaczmarczyk & He Meng & Orkide Ordu & John van Noort & Nynke H. Dekker, 2020. "Chromatin fibers stabilize nucleosomes under torsional stress," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13891-y
    DOI: 10.1038/s41467-019-13891-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13891-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13891-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13891-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.