Author
Listed:
- Jennifer A. McKinney
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Guliang Wang
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Anirban Mukherjee
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Laura Christensen
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Sai H. Sankara Subramanian
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Junhua Zhao
(The University of Texas at Austin, Dell Pediatric Research Institute)
- Karen M. Vasquez
(The University of Texas at Austin, Dell Pediatric Research Institute)
Abstract
Alternative DNA structure-forming sequences can stimulate mutagenesis and are enriched at mutation hotspots in human cancer genomes, implicating them in disease etiology. However, the mechanisms involved are not well characterized. Here, we discover that Z-DNA is mutagenic in yeast as well as human cells, and that the nucleotide excision repair complex, Rad10-Rad1(ERCC1-XPF), and the mismatch repair complex, Msh2-Msh3, are required for Z-DNA-induced genetic instability in yeast and human cells. Both ERCC1-XPF and MSH2-MSH3 bind to Z-DNA-forming sequences, though ERCC1-XPF recruitment to Z-DNA is dependent on MSH2-MSH3. Moreover, ERCC1-XPF−dependent DNA strand-breaks occur near the Z-DNA-forming region in human cell extracts, and we model these interactions at the sub-molecular level. We propose a relationship in which these complexes recognize and process Z-DNA in eukaryotes, representing a mechanism of Z-DNA-induced genomic instability.
Suggested Citation
Jennifer A. McKinney & Guliang Wang & Anirban Mukherjee & Laura Christensen & Sai H. Sankara Subramanian & Junhua Zhao & Karen M. Vasquez, 2020.
"Distinct DNA repair pathways cause genomic instability at alternative DNA structures,"
Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13878-9
DOI: 10.1038/s41467-019-13878-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13878-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.