IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13859-y.html
   My bibliography  Save this article

A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex

Author

Listed:
  • Daniela H. Palmer

    (University of Chicago
    University of Chicago
    University of Sheffield)

  • Marcus R. Kronforst

    (University of Chicago
    University of Chicago)

Abstract

Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry in Papilio swallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene, doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option of dsx as a mimicry locus, and that evolutionary turnover of dsx alleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages.

Suggested Citation

  • Daniela H. Palmer & Marcus R. Kronforst, 2020. "A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13859-y
    DOI: 10.1038/s41467-019-13859-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13859-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13859-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13859-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.