Author
Listed:
- Chao Lian
(Chinese Academy of Sciences)
- Sheng-Jie Zhang
(Chinese Academy of Sciences)
- Shi-Qi Hu
(Chinese Academy of Sciences)
- Meng-Xue Guan
(Chinese Academy of Sciences)
- Sheng Meng
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Songshan Lake Materials Laboratory)
Abstract
The origin of charge density waves (CDWs) in TiSe$${}_{2}$$2 has long been debated, mainly due to the difficulties in identifying the timescales of the excitonic pairing and electron–phonon coupling (EPC). Without a time-resolved and microscopic mechanism, one has to assume simultaneous appearance of CDW and periodic lattice distortions (PLD). Here, we accomplish a complete separation of ultrafast exciton and PLD dynamics and unravel their interplay in our real-time time-dependent density functional theory simulations. We find that laser pulses knock off the exciton order and induce a homogeneous bonding–antibonding transition in the initial 20 fs, then the weakened electronic order triggers ionic movements antiparallel to the original PLD. The EPC comes into play after the initial 20 fs, and the two processes mutually amplify each other leading to a complete inversion of CDW ordering. The self-amplified dynamics reproduces the evolution of band structures in agreement with photoemission experiments. Hence we resolve the key processes in the initial dynamics of CDWs that help elucidate the underlying mechanism.
Suggested Citation
Chao Lian & Sheng-Jie Zhang & Shi-Qi Hu & Meng-Xue Guan & Sheng Meng, 2020.
"Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2,"
Nature Communications, Nature, vol. 11(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13672-7
DOI: 10.1038/s41467-019-13672-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13672-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.