IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13819-6.html
   My bibliography  Save this article

Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore

Author

Listed:
  • James N. Bull

    (University of East Anglia)

  • Cate S. Anstöter

    (Durham University)

  • Jan R. R. Verlet

    (Durham University)

Abstract

Non-valence states in neutral molecules (Rydberg states) have well-established roles and importance in photochemistry, however, considerably less is known about the role of non-valence states in photo-induced processes in anions. Here, femtosecond time-resolved photoelectron imaging is used to show that photoexcitation of the S1(ππ*) state of the methyl ester of deprotonated para-coumaric acid – a model chromophore for photoactive yellow protein (PYP) – leads to a bifurcation of the excited state wavepacket. One part remains on the S1(ππ*) state forming a twisted intermediate, whilst a second part leads to the formation of a non-valence (dipole-bound) state. Both populations eventually decay independently by vibrational autodetachment. Valence-to-non-valence internal conversion has hitherto not been observed in the intramolecular photophysics of an isolated anion, raising questions into how common such processes might be, given that many anionic chromophores have bright valence states near the detachment threshold.

Suggested Citation

  • James N. Bull & Cate S. Anstöter & Jan R. R. Verlet, 2019. "Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13819-6
    DOI: 10.1038/s41467-019-13819-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13819-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13819-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13819-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.