IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13737-7.html
   My bibliography  Save this article

Controllability governs the balance between Pavlovian and instrumental action selection

Author

Listed:
  • Hayley M. Dorfman

    (Department of Psychology and Center for Brain Science, Harvard University, Northwest Lab Building)

  • Samuel J. Gershman

    (Department of Psychology and Center for Brain Science, Harvard University, Northwest Lab Building)

Abstract

A Pavlovian bias to approach reward-predictive cues and avoid punishment-predictive cues can conflict with instrumentally-optimal actions. Here, we propose that the brain arbitrates between Pavlovian and instrumental control by inferring which is a better predictor of reward. The instrumental predictor is more flexible; it can learn values that depend on both stimuli and actions, whereas the Pavlovian predictor learns values that depend only on stimuli. The arbitration theory predicts that the Pavlovian predictor will be favored when rewards are relatively uncontrollable, because the additional flexibility of the instrumental predictor is not useful. Consistent with this hypothesis, we find that the Pavlovian approach bias is stronger under low control compared to high control contexts.

Suggested Citation

  • Hayley M. Dorfman & Samuel J. Gershman, 2019. "Controllability governs the balance between Pavlovian and instrumental action selection," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13737-7
    DOI: 10.1038/s41467-019-13737-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13737-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13737-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Huang & Lin Wang & Xiaomeng Hu & Sen Chen & Yunwen Tao & Haiyang Su & Jing Yang & Wei Xu & Vadanasundari Vedarethinam & Shu Wu & Bin Liu & Xinze Wan & Jiatao Lou & Qian Wang & Kun Qian, 2020. "Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Rémi Philippe & Rémi Janet & Koosha Khalvati & Rajesh P. N. Rao & Daeyeol Lee & Jean-Claude Dreher, 2024. "Neurocomputational mechanisms involved in adaptation to fluctuating intentions of others," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13737-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.