IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13680-7.html
   My bibliography  Save this article

The METLIN small molecule dataset for machine learning-based retention time prediction

Author

Listed:
  • Xavier Domingo-Almenara

    (The Scripps Research Institute
    EURECAT – Technology Centre of Catalonia & Rovira i Virgili University joint unit)

  • Carlos Guijas

    (The Scripps Research Institute)

  • Elizabeth Billings

    (The Scripps Research Institute)

  • J. Rafael Montenegro-Burke

    (The Scripps Research Institute)

  • Winnie Uritboonthai

    (The Scripps Research Institute)

  • Aries E. Aisporna

    (The Scripps Research Institute)

  • Emily Chen

    (The Scripps Research Institute)

  • H. Paul Benton

    (The Scripps Research Institute)

  • Gary Siuzdak

    (The Scripps Research Institute
    The Scripps Research Institute)

Abstract

Machine learning has been extensively applied in small molecule analysis to predict a wide range of molecular properties and processes including mass spectrometry fragmentation or chromatographic retention time. However, current approaches for retention time prediction lack sufficient accuracy due to limited available experimental data. Here we introduce the METLIN small molecule retention time (SMRT) dataset, an experimentally acquired reverse-phase chromatography retention time dataset covering up to 80,038 small molecules. To demonstrate the utility of this dataset, we deployed a deep learning model for retention time prediction applied to small molecule annotation. Results showed that in 70$$\%$$% of the cases, the correct molecular identity was ranked among the top 3 candidates based on their predicted retention time. We anticipate that this dataset will enable the community to apply machine learning or first principles strategies to generate better models for retention time prediction.

Suggested Citation

  • Xavier Domingo-Almenara & Carlos Guijas & Elizabeth Billings & J. Rafael Montenegro-Burke & Winnie Uritboonthai & Aries E. Aisporna & Emily Chen & H. Paul Benton & Gary Siuzdak, 2019. "The METLIN small molecule dataset for machine learning-based retention time prediction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13680-7
    DOI: 10.1038/s41467-019-13680-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13680-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13680-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingdu Luo & Yandong Yin & Zhiwei Zhou & Haosong Zhang & Xi Chen & Hongmiao Wang & Zheng-Jiang Zhu, 2023. "A mass spectrum-oriented computational method for ion mobility-resolved untargeted metabolomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Hao Xu & Jinglong Lin & Dongxiao Zhang & Fanyang Mo, 2023. "Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13680-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.