IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13670-9.html
   My bibliography  Save this article

Magic of high-order van Hove singularity

Author

Listed:
  • Noah F. Q. Yuan

    (Massachusetts Institute of Technology)

  • Hiroki Isobe

    (Massachusetts Institute of Technology)

  • Liang Fu

    (Massachusetts Institute of Technology)

Abstract

The van Hove singularity in density of states generally exists in periodic systems due to the presence of saddle points of energy dispersion in momentum space. We introduce a new type of van Hove singularity in two dimensions, resulting from high-order saddle points and exhibiting power-law divergent density of states. We show that high-order van Hove singularity can be generally achieved by tuning the band structure with a single parameter in moiré superlattices, such as twisted bilayer graphene by tuning twist angle or applying pressure, and trilayer graphene by applying vertical electric field. Correlation effects from high-order van Hove singularity near Fermi level are also discussed.

Suggested Citation

  • Noah F. Q. Yuan & Hiroki Isobe & Liang Fu, 2019. "Magic of high-order van Hove singularity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13670-9
    DOI: 10.1038/s41467-019-13670-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13670-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13670-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Hu & Xianxin Wu & Brenden R. Ortiz & Sailong Ju & Xinloong Han & Junzhang Ma & Nicholas C. Plumb & Milan Radovic & Ronny Thomale & Stephen D. Wilson & Andreas P. Schnyder & Ming Shi, 2022. "Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Pyeongjae Park & E. A. Ghioldi & Andrew F. May & James A. Kolopus & Andrey A. Podlesnyak & Stuart Calder & Joseph A. M. Paddison & A. E. Trumper & L. O. Manuel & Cristian D. Batista & Matthew B. Stone, 2024. "Anomalous continuum scattering and higher-order van Hove singularity in the strongly anisotropic S = 1/2 triangular lattice antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bhaskar Ghawri & Phanibhusan S. Mahapatra & Manjari Garg & Shinjan Mandal & Saisab Bhowmik & Aditya Jayaraman & Radhika Soni & Kenji Watanabe & Takashi Taniguchi & H. R. Krishnamurthy & Manish Jain & , 2022. "Breakdown of semiclassical description of thermoelectricity in near-magic angle twisted bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13670-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.