IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13626-z.html
   My bibliography  Save this article

In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller

Author

Listed:
  • Deepak K. Agrawal

    (Northeastern University
    Northeastern University)

  • Ryan Marshall

    (University of Minnesota)

  • Vincent Noireaux

    (University of Minnesota)

  • Eduardo D Sontag

    (Northeastern University
    Northeastern University
    Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School)

Abstract

Feedback mechanisms play a critical role in the maintenance of cell homeostasis in the presence of disturbances and uncertainties. Motivated by the need to tune the dynamics and improve the robustness of gene circuits, biological engineers have proposed various designs that mimic natural molecular feedback control mechanisms. However, practical and predictable implementations have proved challenging because of the complexity of synthesis and analysis of complex biomolecular networks. Here, we analyze and experimentally validate a synthetic biomolecular controller executed in vitro. The controller ensures that gene expression rate tracks an externally imposed reference level, and achieves this goal even in the presence of certain kinds of disturbances. Our design relies upon an analog of the well-known principle of integral feedback in control theory. We implement the controller in an Escherichia coli cell-free transcription-translation system, which allows rapid prototyping and implementation. Modeling and theory guide experimental implementation with well-defined operational predictability.

Suggested Citation

  • Deepak K. Agrawal & Ryan Marshall & Vincent Noireaux & Eduardo D Sontag, 2019. "In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13626-z
    DOI: 10.1038/s41467-019-13626-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13626-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13626-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurice Filo & Sant Kumar & Mustafa Khammash, 2022. "A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Stanislav Anastassov & Maurice Filo & Ching-Hsiang Chang & Mustafa Khammash, 2023. "A cybergenetic framework for engineering intein-mediated integral feedback control systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Chelsea Y. Hu & Richard M. Murray, 2022. "Layered feedback control overcomes performance trade-off in synthetic biomolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13626-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.