IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13621-4.html
   My bibliography  Save this article

Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping

Author

Listed:
  • Jiazhang Lian

    (University of Illinois at Urbana-Champaign
    Zhejiang University)

  • Carl Schultz

    (University of Illinois at Urbana-Champaign)

  • Mingfeng Cao

    (University of Illinois at Urbana-Champaign)

  • Mohammad HamediRad

    (University of Illinois at Urbana-Champaign
    Lifefoundry Inc.)

  • Huimin Zhao

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Genome-scale engineering is an indispensable tool to understand genome functions due to our limited knowledge of cellular networks. Unfortunately, most existing methods for genome-wide genotype–phenotype mapping are limited to a single mode of genomic alteration, i.e. overexpression, repression, or deletion. Here we report a multi-functional genome-wide CRISPR (MAGIC) system to precisely control the expression level of defined genes to desired levels throughout the whole genome. By combining the tri-functional CRISPR system and array-synthesized oligo pools, MAGIC is used to create, to the best of our knowledge, one of the most comprehensive and diversified genomic libraries in yeast ever reported. The power of MAGIC is demonstrated by the identification of previously uncharacterized genetic determinants of complex phenotypes, particularly those having synergistic interactions when perturbed to different expression levels. MAGIC represents a powerful synthetic biology tool to investigate fundamental biological questions as well as engineer complex phenotypes for biotechnological applications.

Suggested Citation

  • Jiazhang Lian & Carl Schultz & Mingfeng Cao & Mohammad HamediRad & Huimin Zhao, 2019. "Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13621-4
    DOI: 10.1038/s41467-019-13621-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13621-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13621-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao Liu & Moshi Liu & Tuo Shi & Guannan Sun & Ning Gao & Xiaojia Zhao & Xuan Guo & Xiaomeng Ni & Qianqian Yuan & Jinhui Feng & Zhemin Liu & Yanmei Guo & Jiuzhou Chen & Yu Wang & Ping Zheng & Jibin Su, 2022. "CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13621-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.