IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13358-0.html
   My bibliography  Save this article

Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform

Author

Listed:
  • Yuxin Liu

    (Capital Normal University)

  • Zheng Wei

    (Capital Normal University)

  • Jing Zhou

    (Capital Normal University)

  • Zhanfang Ma

    (Capital Normal University)

Abstract

Serodiagnosis with a single quantification method suffers from high false positive/negative rates. In this study, a three-channel platform with an accessional instrumented system was constructed for simultaneous electrochemical, luminescent, and photothermal quantification of H2S, a bio-indicator for acute pancreatitis (AP) diagnosis. Utilizing the specific reaction between platform and H2S, the three-channel platform showed high sensitivity and selectivity in the biological H2S concentration range. The three-channel platform was also feasible for identifying the difference in the plasma H2S concentrations of AP and normal mice. More importantly, the precision of AP serodiagnosis was significantly improved (>99.0%) using the three-signal method based on the three-channel platform and an optimized threshold, which was clearly higher than that of the single- or two-signal methods (79.5%–94.1%). Our study highlights the importance of constructing a multichannel platform for the simultaneous multi-signal quantification of bio-indicators, and provides rigorous ways to improve the precision of medical serodiagnosis.

Suggested Citation

  • Yuxin Liu & Zheng Wei & Jing Zhou & Zhanfang Ma, 2019. "Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13358-0
    DOI: 10.1038/s41467-019-13358-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13358-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13358-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13358-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.