IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13065-w.html
   My bibliography  Save this article

Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications

Author

Listed:
  • Xingli Zou

    (The University of Texas at Austin
    Shanghai University)

  • Li Ji

    (The University of Texas at Austin
    The University of Texas at Austin
    Fudan University)

  • Jianbang Ge

    (The University of Texas at Austin)

  • Donald R. Sadoway

    (Massachusetts Institute of Technology)

  • Edward T. Yu

    (The University of Texas at Austin)

  • Allen J. Bard

    (The University of Texas at Austin)

Abstract

Crystalline-silicon solar cells have dominated the photovoltaics market for the past several decades. One of the long standing challenges is the large contribution of silicon wafer cost to the overall module cost. Here, we demonstrate a simple process for making high-purity solar-grade silicon films directly from silicon dioxide via a one-step electrodeposition process in molten salt for possible photovoltaic applications. High-purity silicon films can be deposited with tunable film thickness and doping type by varying the electrodeposition conditions. These electrodeposited silicon films show about 40 to 50% of photocurrent density of a commercial silicon wafer by photoelectrochemical measurements and the highest power conversion efficiency is 3.1% as a solar cell. Compared to the conventional manufacturing process for solar grade silicon wafer production, this approach greatly reduces the capital cost and energy consumption, providing a promising strategy for low-cost silicon solar cells production.

Suggested Citation

  • Xingli Zou & Li Ji & Jianbang Ge & Donald R. Sadoway & Edward T. Yu & Allen J. Bard, 2019. "Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13065-w
    DOI: 10.1038/s41467-019-13065-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13065-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13065-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaifa Du & Enlai Gao & Chunbo Zhang & Yongsong Ma & Peilin Wang & Rui Yu & Wenmiao Li & Kaiyuan Zheng & Xinhua Cheng & Diyong Tang & Bowen Deng & Huayi Yin & Dihua Wang, 2023. "An iron-base oxygen-evolution electrode for high-temperature electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Wang, Xiaohui & Xu, Li & Ge, Shengbo & Foong, Shin Ying & Liew, Rock Keey & Fong Chong, William Woei & Verma, Meenakshi & Naushad, Mu. & Park, Young-Kwon & Lam, Su Shiung & Li, Qian & Huang, Runzhou, 2023. "Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance," Energy, Elsevier, vol. 274(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13065-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.