IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13044-1.html
   My bibliography  Save this article

Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes

Author

Listed:
  • Ryota Ieuji

    (Kyushu University
    Kyushu University)

  • Kenichi Goushi

    (Kyushu University
    Kyushu University
    Kyushu University)

  • Chihaya Adachi

    (Kyushu University
    Kyushu University
    Kyushu University)

Abstract

Triplet–triplet upconversion, in which two triplet excitons are converted to one singlet exciton, is a well-known approach to exceed the limit of electroluminescence quantum efficiency in conventional fluorescence-based organic light-emitting diodes. Considering the spin multiplicity of triplet pairs, upconversion efficiency is usually limited to 20%. Although this limit can be exceeded when the energy of a triplet pair is lower than that of a second triplet excited state, such as for rubrene, it is generally difficult to engineer the energy levels of higher triplet excited states. Here, we investigate the upconversion efficiency of a series of new anthracene derivatives with different substituents. Some of these derivatives show upconversion efficiencies close to 50% even though the calculated energy levels of the second triplet excited states are lower than twice the lowest triplet energy. A possible upconversion mechanism is proposed based on the molecular structures and quantum chemical calculations.

Suggested Citation

  • Ryota Ieuji & Kenichi Goushi & Chihaya Adachi, 2019. "Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13044-1
    DOI: 10.1038/s41467-019-13044-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13044-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13044-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Lennart Schleper & Kenichi Goushi & Christoph Bannwarth & Bastian Haehnle & Philipp J. Welscher & Chihaya Adachi & Alexander J. C. Kuehne, 2021. "Hot exciplexes in U-shaped TADF molecules with emission from locally excited states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Yanju Luo & Kai Zhang & Zhenming Ding & Ping Chen & Xiaomei Peng & Yihuan Zhao & Kuan Chen & Chuan Li & Xujun Zheng & Yan Huang & Xuemei Pu & Yu Liu & Shi-Jian Su & Xiandeng Hou & Zhiyun Lu, 2022. "Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13044-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.