IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12984-y.html
   My bibliography  Save this article

Diamond growth from organic compounds in hydrous fluids deep within the Earth

Author

Listed:
  • Maria Luce Frezzotti

    (Università Milano Bicocca)

Abstract

At subduction zones, most diamonds form by carbon saturation in hydrous fluids released from lithospheric plates on equilibration with mantle rocks. Although organic molecules are predicted among dissolved species which are the source for carbon in diamonds, their occurrence is not demonstrated in nature, and the physical model for crustal diamond formation is debated. Here, using Raman microspectroscopy, I determine the structure of carbon-based phases inside fluid inclusions in diamond-bearing rocks from the Alps. The results provide direct evidence that diamond surfaces are coated by sp2-, and sp3-bonded amorphous carbon and functional groups of carboxylic acids (e.g., carboxyl, carboxylate, methyl, and methylene), indicating the geosynthesis of organic compounds in deep hydrous fluids. Moreover, this study suggests diamond nucleation via metastable molecular precursors. As a possible scenario, with carbon saturation by reduction of carboxylate groups, I consider tetrahedral H-terminated C groups as templates for the growth of sp3-structured carbon.

Suggested Citation

  • Maria Luce Frezzotti, 2019. "Diamond growth from organic compounds in hydrous fluids deep within the Earth," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12984-y
    DOI: 10.1038/s41467-019-12984-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12984-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12984-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12984-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.