IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12976-y.html
   My bibliography  Save this article

Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees

Author

Listed:
  • Katerina Machacova

    (Global Change Research Institute of the Czech Academy of Sciences)

  • Elisa Vainio

    (University of Helsinki
    University of Helsinki)

  • Otmar Urban

    (Global Change Research Institute of the Czech Academy of Sciences)

  • Mari Pihlatie

    (University of Helsinki
    University of Helsinki
    University of Helsinki)

Abstract

The role of trees in the nitrous oxide (N2O) balance of boreal forests has been neglected despite evidence suggesting their substantial contribution. We measured seasonal changes in N2O fluxes from soil and stems of boreal trees in Finland, showing clear seasonality in stem N2O flux following tree physiological activity, particularly processes of CO2 uptake and release. Stem N2O emissions peak during the vegetation season, decrease rapidly in October, and remain low but significant to the annual totals during winter dormancy. Trees growing on dry soils even turn to consumption of N2O from the atmosphere during dormancy, thereby reducing their overall N2O emissions. At an annual scale, pine, spruce and birch are net N2O sources, with spruce being the strongest emitter. Boreal trees thus markedly contribute to the seasonal dynamics of ecosystem N2O exchange, and their species-specific contribution should be included into forest emission inventories.

Suggested Citation

  • Katerina Machacova & Elisa Vainio & Otmar Urban & Mari Pihlatie, 2019. "Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12976-y
    DOI: 10.1038/s41467-019-12976-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12976-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12976-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihao Wang & Xiande Zhao & Daming Dong & Chunjiang Zhao & Feng Bao & Rui Guo & Fangxu Zhu & Leizi Jiao, 2023. "Methane Exchange Flux Monitoring between Potential Source Sewage Inspection Wells and the Atmosphere Based on Laser Spectroscopy Method," Sustainability, MDPI, vol. 15(24), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12976-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.