IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12869-0.html
   My bibliography  Save this article

Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders

Author

Listed:
  • M. T. Oetjens

    (Geisinger Health System)

  • M. A. Kelly

    (Geisinger Health System)

  • A. C. Sturm

    (Geisinger Health System)

  • C. L. Martin

    (Geisinger Health System)

  • D. H. Ledbetter

    (Geisinger Health System)

Abstract

Rare genetic disorders (RGDs) often exhibit significant clinical variability among affected individuals, a disease characteristic termed variable expressivity. Recently, the aggregate effect of common variation, quantified as polygenic scores (PGSs), has emerged as an effective tool for predictions of disease risk and trait variation in the general population. Here, we measure the effect of PGSs on 11 RGDs including four sex-chromosome aneuploidies (47,XXX; 47,XXY; 47,XYY; 45,X) that affect height; two copy-number variant (CNV) disorders (16p11.2 deletions and duplications) and a Mendelian disease (melanocortin 4 receptor deficiency (MC4R)) that affect BMI; and two Mendelian diseases affecting cholesterol: familial hypercholesterolemia (FH; LDLR and APOB) and familial hypobetalipoproteinemia (FHBL; PCSK9 and APOB). Our results demonstrate that common, polygenic factors of relevant complex traits frequently contribute to variable expressivity of RGDs and that PGSs may be a useful metric for predicting clinical severity in affected individuals and for risk stratification.

Suggested Citation

  • M. T. Oetjens & M. A. Kelly & A. C. Sturm & C. L. Martin & D. H. Ledbetter, 2019. "Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12869-0
    DOI: 10.1038/s41467-019-12869-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12869-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12869-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brett M Kroncke & Derek K Smith & Yi Zuo & Andrew M Glazer & Dan M Roden & Jeffrey D Blume, 2020. "A Bayesian method to estimate variant-induced disease penetrance," PLOS Genetics, Public Library of Science, vol. 16(6), pages 1-16, June.
    2. Craig Smail & Bing Ge & Marissa R. Keever-Keigher & Carl Schwendinger-Schreck & Warren A. Cheung & Jeffrey J. Johnston & Cassandra Barrett & Keith Feldman & Ana S. A. Cohen & Emily G. Farrow & Isabell, 2024. "Complex trait associations in rare diseases and impacts on Mendelian variant interpretation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Karl-Heinz Tomaszowski & Sunetra Roy & Carolina Guerrero & Poojan Shukla & Caezaan Keshvani & Yue Chen & Martina Ott & Xiaogang Wu & Jianhua Zhang & Courtney D. DiNardo & Detlev Schindler & Katharina , 2023. "Hypomorphic Brca2 and Rad51c double mutant mice display Fanconi anemia, cancer and polygenic replication stress," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12869-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.