IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12781-7.html
   My bibliography  Save this article

Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex

Author

Listed:
  • Chenggang Wang

    (University of Florida)

  • Xiaoen Huang

    (University of Florida
    University of Florida)

  • Qi Li

    (University of Florida)

  • Yanping Zhang

    (University of Florida)

  • Jian-Liang Li

    (NIH)

  • Zhonglin Mou

    (University of Florida)

Abstract

Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana.

Suggested Citation

  • Chenggang Wang & Xiaoen Huang & Qi Li & Yanping Zhang & Jian-Liang Li & Zhonglin Mou, 2019. "Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12781-7
    DOI: 10.1038/s41467-019-12781-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12781-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12781-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Li & Mingxi Zhou & Shweta Chhajed & Fahong Yu & Sixue Chen & Yanping Zhang & Zhonglin Mou, 2023. "N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P)," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12781-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.