IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12774-6.html
   My bibliography  Save this article

Protein folding while chaperone bound is dependent on weak interactions

Author

Listed:
  • Kevin Wu

    (University of Michigan
    University of Michigan)

  • Frederick Stull

    (University of Michigan
    University of Michigan
    Western Michigan University)

  • Changhan Lee

    (University of Michigan
    University of Michigan)

  • James C. A. Bardwell

    (University of Michigan
    University of Michigan)

Abstract

It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding.

Suggested Citation

  • Kevin Wu & Frederick Stull & Changhan Lee & James C. A. Bardwell, 2019. "Protein folding while chaperone bound is dependent on weak interactions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12774-6
    DOI: 10.1038/s41467-019-12774-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12774-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12774-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei He & Xinming Li & Hongjuan Xue & Yuanyuan Yang & Jun Mencius & Ling Bai & Jiayin Zhang & Jianhe Xu & Bin Wu & Yi Xue & Shu Quan, 2022. "Insights into the client protein release mechanism of the ATP-independent chaperone Spy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kevin Wu & Thomas C. Minshull & Sheena E. Radford & Antonio N. Calabrese & James C. A. Bardwell, 2022. "Trigger factor both holds and folds its client proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12774-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.