IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12724-2.html
   My bibliography  Save this article

Revealing neural correlates of behavior without behavioral measurements

Author

Listed:
  • Alon Rubin

    (Weizmann Institute of Science)

  • Liron Sheintuch

    (Weizmann Institute of Science)

  • Noa Brande-Eilat

    (Weizmann Institute of Science)

  • Or Pinchasof

    (Weizmann Institute of Science)

  • Yoav Rechavi

    (Weizmann Institute of Science)

  • Nitzan Geva

    (Weizmann Institute of Science)

  • Yaniv Ziv

    (Weizmann Institute of Science)

Abstract

Measuring neuronal tuning curves has been instrumental for many discoveries in neuroscience but requires a priori assumptions regarding the identity of the encoded variables. We applied unsupervised learning to large-scale neuronal recordings in behaving mice from circuits involved in spatial cognition and uncovered a highly-organized internal structure of ensemble activity patterns. This emergent structure allowed defining for each neuron an ‘internal tuning-curve’ that characterizes its activity relative to the network activity, rather than relative to any predefined external variable, revealing place-tuning and head-direction tuning without relying on measurements of place or head-direction. Similar investigation in prefrontal cortex revealed schematic representations of distances and actions, and exposed a previously unknown variable, the ‘trajectory-phase’. The internal structure was conserved across mice, allowing using one animal’s data to decode another animal’s behavior. Thus, the internal structure of neuronal activity itself enables reconstructing internal representations and discovering new behavioral variables hidden within a neural code.

Suggested Citation

  • Alon Rubin & Liron Sheintuch & Noa Brande-Eilat & Or Pinchasof & Yoav Rechavi & Nitzan Geva & Yaniv Ziv, 2019. "Revealing neural correlates of behavior without behavioral measurements," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12724-2
    DOI: 10.1038/s41467-019-12724-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12724-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12724-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12724-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.