IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12639-y.html
   My bibliography  Save this article

Synthetic protein-conductive membrane nanopores built with DNA

Author

Listed:
  • Tim Diederichs

    (Goethe University Frankfurt)

  • Genevieve Pugh

    (University College London)

  • Adam Dorey

    (University College London)

  • Yongzheng Xing

    (University College London)

  • Jonathan R. Burns

    (University College London)

  • Quoc Hung Nguyen

    (Technical University of Munich)

  • Marc Tornow

    (Technical University of Munich
    Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT)
    Ludwig-Maximilians-University)

  • Robert Tampé

    (Goethe University Frankfurt)

  • Stefan Howorka

    (University College London)

Abstract

Nanopores are key in portable sequencing and research given their ability to transport elongated DNA or small bioactive molecules through narrow transmembrane channels. Transport of folded proteins could lead to similar scientific and technological benefits. Yet this has not been realised due to the shortage of wide and structurally defined natural pores. Here we report that a synthetic nanopore designed via DNA nanotechnology can accommodate folded proteins. Transport of fluorescent proteins through single pores is kinetically analysed using massively parallel optical readout with transparent silicon-on-insulator cavity chips vs. electrical recordings to reveal an at least 20-fold higher speed for the electrically driven movement. Pores nevertheless allow a high diffusive flux of more than 66 molecules per second that can also be directed beyond equillibria. The pores may be exploited to sense diagnostically relevant proteins with portable analysis technology, to create molecular gates for drug delivery, or to build synthetic cells.

Suggested Citation

  • Tim Diederichs & Genevieve Pugh & Adam Dorey & Yongzheng Xing & Jonathan R. Burns & Quoc Hung Nguyen & Marc Tornow & Robert Tampé & Stefan Howorka, 2019. "Synthetic protein-conductive membrane nanopores built with DNA," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12639-y
    DOI: 10.1038/s41467-019-12639-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12639-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12639-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smrithi Krishnan R & Kalyanashis Jana & Amina H. Shaji & Karthika S. Nair & Anjali Devi Das & Devika Vikraman & Harsha Bajaj & Ulrich Kleinekathöfer & Kozhinjampara R. Mahendran, 2022. "Assembly of transmembrane pores from mirror-image peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Qi Yang & Xu Chang & Jung Yeon Lee & Minu Saji & Fei Zhang, 2023. "DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12639-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.