IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12627-2.html
   My bibliography  Save this article

Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery

Author

Listed:
  • Xiaorui Liu

    (Tianjin University)

  • Yifei Yuan

    (University of Illinois at Chicago)

  • Jie Liu

    (Tianjin University)

  • Bin Liu

    (Shanghai Jiao Tong University)

  • Xu Chen

    (Shanghai Jiao Tong University)

  • Jia Ding

    (Tianjin University)

  • Xiaopeng Han

    (Tianjin University)

  • Yida Deng

    (Tianjin University)

  • Cheng Zhong

    (Tianjin University
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University)

  • Wenbin Hu

    (Tianjin University
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University)

Abstract

Directly harvesting solar energy for battery charging represents an ultimate solution toward low-cost, green, efficient and sustainable electrochemical energy storage. Here, we design a sunlight promotion strategy into rechargeable zinc–air battery with significantly reduced charging potential below the theoretical cell voltage of zinc–air batteries. The sunlight-promoted zinc–air battery using BiVO4 or α-Fe2O3 air photoelectrode achieves a record-low charge potential of ~1.20 and ~1.43 V, respectively, under illumination, which is lowered by ~0.5–0.8 V compared to the typical charge voltage of ~2 V in conventional zinc–air battery. The band structure and photoelectrochemical stability of photoelectrodes are found to be key factors determining the charging performance of sunlight-promoted zinc–air batteries. The introduction of photoelectrode as an air electrode opens a facile way for developing integrated single-unit zinc–air batteries that can efficiently use solar energy to overcome the high charging overpotential of conventional zinc–air batteries.

Suggested Citation

  • Xiaorui Liu & Yifei Yuan & Jie Liu & Bin Liu & Xu Chen & Jia Ding & Xiaopeng Han & Yida Deng & Cheng Zhong & Wenbin Hu, 2019. "Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12627-2
    DOI: 10.1038/s41467-019-12627-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12627-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12627-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuwei Zhong & Bin Liu & Zequan Zhao & Yuanhao Shen & Xiaorui Liu & Cheng Zhong, 2021. "Influencing Factors of Performance Degradation of Zinc–Air Batteries Exposed to Air," Energies, MDPI, vol. 14(9), pages 1-11, May.
    2. Leong, Kee Wah & Wang, Yifei & Ni, Meng & Pan, Wending & Luo, Shijing & Leung, Dennis Y.C., 2022. "Rechargeable Zn-air batteries: Recent trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12627-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.