IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12615-6.html
   My bibliography  Save this article

Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy

Author

Listed:
  • Jianbo Tang

    (University of New South Wales (UNSW))

  • Rahman Daiyan

    (University of New South Wales (UNSW))

  • Mohammad B. Ghasemian

    (University of New South Wales (UNSW))

  • Shuhada A. Idrus-Saidi

    (University of New South Wales (UNSW))

  • Ali Zavabeti

    (RMIT University
    Nanjing University of Aeronautics and Astronautics)

  • Torben Daeneke

    (RMIT University)

  • Jiong Yang

    (University of New South Wales (UNSW))

  • Pramod Koshy

    (UNSW)

  • Soshan Cheong

    (UNSW)

  • Richard D. Tilley

    (UNSW
    UNSW
    UNSW)

  • Richard B. Kaner

    (University of California, Los Angeles (UCLA)
    UCLA)

  • Rose Amal

    (University of New South Wales (UNSW))

  • Kourosh Kalantar-Zadeh

    (University of New South Wales (UNSW))

Abstract

The nascent field of nanotechnology-enabled metallurgy has great potential. However, the role of eutectic alloys and the nature of alloy solidification in this field are still largely unknown. To demonstrate one of the promises of liquid metals in the field, we explore a model system of catalytically active Bi-Sn nano-alloys produced using a liquid-phase ultrasonication technique and investigate their phase separation, surface oxidation, and nucleation. The Bi-Sn ratio determines the grain boundary properties and the emergence of dislocations within the nano-alloys. The eutectic system gives rise to the smallest grain dimensions among all Bi-Sn ratios along with more pronounced dislocation formation within the nano-alloys. Using electrochemical CO2 reduction and photocatalysis, we demonstrate that the structural peculiarity of the eutectic nano-alloys offers the highest catalytic activity in comparison with their non-eutectic counterparts. The fundamentals of nano-alloy formation revealed here may establish the groundwork for creating bimetallic and multimetallic nano-alloys.

Suggested Citation

  • Jianbo Tang & Rahman Daiyan & Mohammad B. Ghasemian & Shuhada A. Idrus-Saidi & Ali Zavabeti & Torben Daeneke & Jiong Yang & Pramod Koshy & Soshan Cheong & Richard D. Tilley & Richard B. Kaner & Rose A, 2019. "Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12615-6
    DOI: 10.1038/s41467-019-12615-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12615-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12615-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Yifeng Hou & Fengyan Wang & Chichu Qin & Shining Wu & Mengyang Cao & Pengkun Yang & Lu Huang & Yingpeng Wu, 2022. "A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12615-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.