IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12596-6.html
   My bibliography  Save this article

Rational design of crystalline two-dimensional frameworks with highly complicated topological structures

Author

Listed:
  • Rong-Ran Liang

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Shun-Qi Xu

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Lei Zhang

    (Peking University)

  • Ru-Han A

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Pohua Chen

    (Peking University)

  • Fu-Zhi Cui

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Qiao-Yan Qi

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Junliang Sun

    (Peking University)

  • Xin Zhao

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

Abstract

Constructing two-dimensional (2D) polymers with complex tessellation patterns via synthetic chemistry makes a significant contribution not only to the understanding of the emergence of complex hierarchical systems in living organisms, but also to the fabrication of advanced hierarchical materials. However, to achieve such tasks is a great challenge. In this communication we report a facile and general approach to tessellate 2D covalent organic frameworks (COFs) by three or four geometric shapes/sizes, which affords 2D COFs bearing three or four different kinds of pores and increases structural complexity in tessellations of 2D polymers to a much higher level. The complex tessellation patterns of the COFs are elucidated by powder X-ray diffraction studies, theoretical simulations and high-resolution TEM.

Suggested Citation

  • Rong-Ran Liang & Shun-Qi Xu & Lei Zhang & Ru-Han A & Pohua Chen & Fu-Zhi Cui & Qiao-Yan Qi & Junliang Sun & Xin Zhao, 2019. "Rational design of crystalline two-dimensional frameworks with highly complicated topological structures," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12596-6
    DOI: 10.1038/s41467-019-12596-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12596-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12596-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ningning He & Yingdi Zou & Cheng Chen & Minghao Tan & Yingdan Zhang & Xiaofeng Li & Zhimin Jia & Jie Zhang & Honghan Long & Haiyue Peng & Kaifu Yu & Bo Jiang & Ziqian Han & Ning Liu & Yang Li & Lijian, 2024. "Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yong Liu & Liangchao Yuan & Wenwen Chi & Wang-Kang Han & Jinfang Zhang & Huan Pang & Zhongchang Wang & Zhi-Guo Gu, 2024. "Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shu-Yan Jiang & Zhi-Bei Zhou & Shi-Xian Gan & Ya Lu & Chao Liu & Qiao-Yan Qi & Jin Yao & Xin Zhao, 2024. "Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Minghao Liu & Shuai Yang & Xiubei Yang & Cheng-Xing Cui & Guojuan Liu & Xuewen Li & Jun He & George Zheng Chen & Qing Xu & Gaofeng Zeng, 2023. "Post-synthetic modification of covalent organic frameworks for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12596-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.