IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12442-9.html
   My bibliography  Save this article

Complementary vibrational spectroscopy

Author

Listed:
  • Kazuki Hashimoto

    (The University of Tokyo
    Japan Aerospace Exploration Agency)

  • Venkata Ramaiah Badarla

    (The University of Tokyo)

  • Akira Kawai

    (The University of Tokyo)

  • Takuro Ideguchi

    (The University of Tokyo
    PRESTO, Japan Science and Technology Agency)

Abstract

Vibrational spectroscopy, comprised of infrared absorption and Raman scattering spectroscopy, is widely used for label-free optical sensing and imaging in various scientific and industrial fields. The two molecular spectroscopy methods are sensitive to different types of vibrations and provide complementary vibrational spectra, but obtaining complete vibrational information with a single spectroscopic device is challenging due to the large wavelength discrepancy between the two methods. Here, we demonstrate simultaneous infrared absorption and Raman scattering spectroscopy that allows us to measure the complete broadband vibrational spectra in the molecular fingerprint region with a single instrument based on an ultrashort pulsed laser. The system is based on dual-modal Fourier-transform spectroscopy enabled by efficient use of nonlinear optical effects. Our proof-of-concept experiment demonstrates rapid, broadband and high spectral resolution measurements of complementary spectra of organic liquids for precise and accurate molecular analysis.

Suggested Citation

  • Kazuki Hashimoto & Venkata Ramaiah Badarla & Akira Kawai & Takuro Ideguchi, 2019. "Complementary vibrational spectroscopy," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12442-9
    DOI: 10.1038/s41467-019-12442-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12442-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12442-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qijue Wang & Patrick McArdle & Stephanie L. Wang & Ryan L. Wilmington & Zhen Xing & Alexander Greenwood & Myriam L. Cotten & M. Mumtaz Qazilbash & Hannes C. Schniepp, 2022. "Protein secondary structure in spider silk nanofibrils," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jianan Fang & Kun Huang & Ruiyang Qin & Yan Liang & E Wu & Ming Yan & Heping Zeng, 2024. "Wide-field mid-infrared hyperspectral imaging beyond video rate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12442-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.