IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12349-5.html
   My bibliography  Save this article

R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon

Author

Listed:
  • Christine Harnack

    (Charité University Medicine
    Max Planck Institute for Infection Biology)

  • Hilmar Berger

    (Max Planck Institute for Infection Biology)

  • Agne Antanaviciute

    (University of Oxford)

  • Ramon Vidal

    (Max Delbrück Center)

  • Sascha Sauer

    (Max Delbrück Center
    Berlin Institute of Health)

  • Alison Simmons

    (University of Oxford)

  • Thomas F. Meyer

    (Max Planck Institute for Infection Biology)

  • Michael Sigal

    (Charité University Medicine
    Max Planck Institute for Infection Biology
    Berlin Institute of Health)

Abstract

The colonic epithelial turnover is driven by crypt-base stem cells that express the R-spondin receptor Lgr5. Signals that regulate epithelial regeneration upon stem cell injury are largely unknown. Here, we explore the dynamics of Wnt signaling in the colon. We identify two populations of cells with active Wnt signaling: highly proliferative Lgr5+/Axin2+ cells, as well as secretory Lgr5−/Axin2+ cells. Upon Lgr5+ cell depletion, these cells are recruited to contribute to crypt regeneration. Chemical injury induced by DSS leads to a loss of both Lgr5+ cells and Axin2+ cells and epithelial regeneration is driven by Axin2− cells, including differentiated Krt20+ surface enterocytes. Regeneration requires stromal Rspo3, which is present at increased levels upon injury and reprograms Lgr5− but Lgr4+ differentiated cells. In contrast, depletion of stromal Rspo3 impairs crypt regeneration, even upon mild injury. We demonstrate that Rspo3 is essential for epithelial repair via induction of Wnt signaling in differentiated cells.

Suggested Citation

  • Christine Harnack & Hilmar Berger & Agne Antanaviciute & Ramon Vidal & Sascha Sauer & Alison Simmons & Thomas F. Meyer & Michael Sigal, 2019. "R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12349-5
    DOI: 10.1038/s41467-019-12349-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12349-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12349-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Kapalczynska & Manqiang Lin & Jeroen Maertzdorf & Julian Heuberger & Stefanie Muellerke & Xiangsheng Zuo & Ramon Vidal & Imad Shureiqi & Anne-Sophie Fischer & Sascha Sauer & Hilmar Berger & Evel, 2022. "BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Manqiang Lin & Kimberly Hartl & Julian Heuberger & Giulia Beccaceci & Hilmar Berger & Hao Li & Lichao Liu & Stefanie Müllerke & Thomas Conrad & Felix Heymann & Andrew Woehler & Frank Tacke & Nikolaus , 2023. "Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12349-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.