IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12101-z.html
   My bibliography  Save this article

The mutational landscape of a prion-like domain

Author

Listed:
  • Benedetta Bolognesi

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology
    The Barcelona Institute of Science and Technology)

  • Andre J. Faure

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology)

  • Mireia Seuma

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology
    The Barcelona Institute of Science and Technology)

  • Jörn M. Schmiedel

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology)

  • Gian Gaetano Tartaglia

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology
    Universitat Pompeu Fabra (UPF)
    Institució Catalana de Recerca i Estudis Avançats (ICREA)
    Sapienza University of Rome)

  • Ben Lehner

    (Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology
    Universitat Pompeu Fabra (UPF)
    Institució Catalana de Recerca i Estudis Avançats (ICREA))

Abstract

Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis (ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler cellular systems. We reasoned that deep mutagenesis might be a powerful approach to disentangle the relationship between aggregation and toxicity. We generated >50,000 mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates. Mutations have their strongest effects in a hotspot that genetic interactions reveal to be structured in vivo, illustrating how mutagenesis can probe the in vivo structures of unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but protects cells, most likely by titrating the protein away from a toxic liquid-like phase.

Suggested Citation

  • Benedetta Bolognesi & Andre J. Faure & Mireia Seuma & Jörn M. Schmiedel & Gian Gaetano Tartaglia & Ben Lehner, 2019. "The mutational landscape of a prion-like domain," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12101-z
    DOI: 10.1038/s41467-019-12101-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12101-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12101-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahiro Nemoto & Tommaso Ocari & Arthur Planul & Muge Tekinsoy & Emilia A. Zin & Deniz Dalkara & Ulisse Ferrari, 2023. "ACIDES: on-line monitoring of forward genetic screens for protein engineering," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ziyi Zhou & Liang Zhang & Yuanxi Yu & Banghao Wu & Mingchen Li & Liang Hong & Pan Tan, 2024. "Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Rosa Antón & Miguel Á. Treviño & David Pantoja-Uceda & Sara Félix & María Babu & Eurico J. Cabrita & Markus Zweckstetter & Philip Tinnefeld & Andrés M. Vera & Javier Oroz, 2024. "Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Mireia Seuma & Ben Lehner & Benedetta Bolognesi, 2022. "An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Hongyi Wu & Loo Chien Wang & Belle M. Sow & Damien Leow & Jin Zhu & Kathryn M. Gallo & Kathleen Wilsbach & Roshni Gupta & Lyle W. Ostrow & Crystal J. J. Yeo & Radoslaw M. Sobota & Rong Li, 2024. "TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Jaime Carrasco & Rosa Antón & Alejandro Valbuena & David Pantoja-Uceda & Mayur Mukhi & Rubén Hervás & Douglas V. Laurents & María Gasset & Javier Oroz, 2023. "Metamorphism in TDP-43 prion-like domain determines chaperone recognition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12101-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.