IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12030-x.html
   My bibliography  Save this article

An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays

Author

Listed:
  • Minrui Chen

    (Nanjing University)

  • Weifeng Luo

    (Nanjing University)

  • Zhongqi Xu

    (Nanjing University)

  • Xueping Zhang

    (Nanjing University)

  • Bo Xie

    (Huibei Normal University)

  • Guanghou Wang

    (Nanjing University)

  • Min Han

    (Nanjing University)

Abstract

Tunneling conductance among nanoparticle arrays is extremely sensitive to the spacing of nanoparticles and might be applied to fabricate ultra-sensitive sensors. Such sensors are of paramount significance for various application, such as automotive systems and consumer electronics. Here, we represent a sensitive pressure sensor which is composed of a piezoresistive strain transducer fabricated from closely spaced nanoparticle films deposited on a flexible membrane. Benefited from this unique quantum transport mechanism, the thermal noise of the sensor decreases significantly, providing the opportunity for our devices to serve as high-performance pressure sensors with an ultrahigh resolution as fine as about 0.5 Pa and a high sensitivity of 0.13 kPa−1. Moreover, our sensor with such an unprecedented response capability can be operated as a barometric altimeter with an altitude resolution of about 1 m. The outstanding behaviors of our devices make nanoparticle arrays for use as actuation materials for pressure measurement.

Suggested Citation

  • Minrui Chen & Weifeng Luo & Zhongqi Xu & Xueping Zhang & Bo Xie & Guanghou Wang & Min Han, 2019. "An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12030-x
    DOI: 10.1038/s41467-019-12030-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12030-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12030-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan Li & Yingxin Zhou & Yuqing Li & Chunwei Li & Wentao Xiang & Xueqing Chen & Pan Zhang & Qi Zhang & Jun Su & Bohao Jin & Huize Song & Cai Cheng & Minghui Guo & Lei Wang & Jing Liu, 2024. "Transformable 3D curved high-density liquid metal coils – an integrated unit for general soft actuation, sensing and communication," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12030-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.