Author
Listed:
- Dongqing Pan
(Max Planck Institute of Molecular Physiology)
- Kai Walstein
(Max Planck Institute of Molecular Physiology)
- Annika Take
(Max Planck Institute of Molecular Physiology)
- David Bier
(Max Planck Institute of Molecular Physiology)
- Nadine Kaiser
(Max Planck Institute of Molecular Physiology)
- Andrea Musacchio
(Max Planck Institute of Molecular Physiology
University Duisburg-Essen, Universitätsstrasse)
Abstract
Nucleosomes containing the histone H3 variant CENP-A are the epigenetic mark of centromeres, the kinetochore assembly sites required for chromosome segregation. HJURP is the CENP-A chaperone, which associates with Mis18α, Mis18β, and M18BP1 to target centromeres and deposit new CENP-A. How these proteins interact to promote CENP-A deposition remains poorly understood. Here we show that two repeats in human HJURP proposed to be functionally distinct are in fact interchangeable and bind concomitantly to the 4:2:2 Mis18α:Mis18β:M18BP1 complex without dissociating it. HJURP binds CENP-A:H4 dimers, and therefore assembly of CENP-A:H4 tetramers must be performed by two Mis18αβ:M18BP1:HJURP complexes, or by the same complex in consecutive rounds. The Mis18α N-terminal tails blockade two identical HJURP-repeat binding sites near the Mis18αβ C-terminal helices. These were identified by photo-cross-linking experiments and mutated to separate Mis18 from HJURP centromere recruitment. Our results identify molecular underpinnings of eukaryotic chromosome inheritance and shed light on how centromeres license CENP-A deposition.
Suggested Citation
Dongqing Pan & Kai Walstein & Annika Take & David Bier & Nadine Kaiser & Andrea Musacchio, 2019.
"Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing,"
Nature Communications, Nature, vol. 10(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12019-6
DOI: 10.1038/s41467-019-12019-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12019-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.