Author
Listed:
- Zhen Geng
(Huazhong University of Science and Technology)
- Bijin Xiong
(Huazhong University of Science and Technology)
- Liquan Wang
(East China University of Science and Technology)
- Ke Wang
(Huazhong University of Science and Technology)
- Min Ren
(Huazhong University of Science and Technology)
- Lianbin Zhang
(Huazhong University of Science and Technology)
- Jintao Zhu
(Huazhong University of Science and Technology)
- Zhenzhong Yang
(Tsinghua University)
Abstract
The Moebius topology (twisted, single-sided strip) is intriguing because of its structural elegance and distinct properties. Here we report the generation of block copolymer Moebius strips via a fast self-assembly of chiral block copolymer polystyrene-block-poly(D-lactide acid) (PS-b-PDLA) in tetrahydrofuran/water mixed solvents. The Moebius strip is formed by morphological evolution from large compound micelle (LCM) to spindle-like micelle (SLM) and then to toroid with a 180° twist along the ring. Mechanism insight reveals that a subtle balance of crystallization of PDLA and microphase separation between PS and PDLA chains dominates the formation of Moebius strips. An intriguing helix-helix transition occurs during the chiral transfer from microphase to assemblies, which is driven by relaxation of the internal stress within SLM related to orientated stretching of PS chains. Mesoporous chiral channels can be generated within Moebius strips after removal of PDLA, which are interesting in chiral recognition, separation and asymmetric catalysis.
Suggested Citation
Zhen Geng & Bijin Xiong & Liquan Wang & Ke Wang & Min Ren & Lianbin Zhang & Jintao Zhu & Zhenzhong Yang, 2019.
"Moebius strips of chiral block copolymers,"
Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11991-3
DOI: 10.1038/s41467-019-11991-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11991-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.