IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11987-z.html
   My bibliography  Save this article

Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation

Author

Listed:
  • Jian-Ping Huang

    (Chinese Academy of Sciences)

  • Chengli Fang

    (Chinese Academy of Sciences)

  • Xiaoyan Ma

    (Chinese Academy of Sciences
    Sichuan University of Science & Engineering)

  • Li Wang

    (Chinese Academy of Sciences)

  • Jing Yang

    (Chinese Academy of Sciences)

  • Jianying Luo

    (Chinese Academy of Sciences)

  • Yijun Yan

    (Chinese Academy of Sciences)

  • Yu Zhang

    (Chinese Academy of Sciences)

  • Sheng-Xiong Huang

    (Chinese Academy of Sciences)

Abstract

The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation.

Suggested Citation

  • Jian-Ping Huang & Chengli Fang & Xiaoyan Ma & Li Wang & Jing Yang & Jianying Luo & Yijun Yan & Yu Zhang & Sheng-Xiong Huang, 2019. "Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11987-z
    DOI: 10.1038/s41467-019-11987-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11987-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11987-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangyuan Zhang & Fei Qiu & Junlan Zeng & Zhichao Xu & Yueli Tang & Tengfei Zhao & Yuqin Gou & Fei Su & Shiyi Wang & Xiuli Sun & Zheyong Xue & Weixing Wang & Chunxian Yang & Lingjiang Zeng & Xiaozhong , 2023. "Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Tian Tian & Yong-Jiang Wang & Jian-Ping Huang & Jie Li & Bingyan Xu & Yin Chen & Li Wang & Jing Yang & Yijun Yan & Sheng-Xiong Huang, 2022. "Catalytic innovation underlies independent recruitment of polyketide synthases in cocaine and hyoscyamine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jiao Yang & Ying Wu & Pan Zhang & Jianxiang Ma & Ying Jun Yao & Yan Lin Ma & Lei Zhang & Yongzhi Yang & Changmin Zhao & Jihua Wu & Xiangwen Fang & Jianquan Liu, 2023. "Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11987-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.