IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11981-5.html
   My bibliography  Save this article

Emergent honeycomb network of topological excitations in correlated charge density wave

Author

Listed:
  • Jae Whan Park

    (Institute for Basic Science (IBS))

  • Gil Young Cho

    (Pohang University of Science and Technology)

  • Jinwon Lee

    (Institute for Basic Science (IBS)
    Pohang University of Science and Technology)

  • Han Woong Yeom

    (Institute for Basic Science (IBS)
    Pohang University of Science and Technology)

Abstract

When two periodic potentials compete in materials, one may adopt the other, which straightforwardly generates topological defects. Of particular interest are domain walls in charge-, dipole-, and spin-ordered systems, which govern macroscopic properties and important functionality. However, detailed atomic and electronic structures of domain walls have often been uncertain and the microscopic mechanism of their functionality has been elusive. Here, we clarify the complete atomic and electronic structures of the domain wall network, a honeycomb network connected by Z3 vortices, in the nearly commensurate Mott charge-density wave (CDW) phase of 1T-TaS2. Scanning tunneling microscopy resolves characteristic charge orders within domain walls and their vortices. Density functional theory calculations disclose their unique atomic relaxations and the metallic in-gap states confined tightly therein. A generic theory is constructed, which connects this emergent honeycomb network of conducting electrons to the enhanced superconductivity.

Suggested Citation

  • Jae Whan Park & Gil Young Cho & Jinwon Lee & Han Woong Yeom, 2019. "Emergent honeycomb network of topological excitations in correlated charge density wave," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11981-5
    DOI: 10.1038/s41467-019-11981-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11981-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11981-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Zhao & Zhengwei Nie & Hao Hong & Xia Qiu & Shiyi Han & Yue Yu & Mengxi Liu & Xiaohui Qiu & Kaihui Liu & Sheng Meng & Lianming Tong & Jin Zhang, 2023. "Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11981-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.