IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11966-4.html
   My bibliography  Save this article

Giant valley splitting in monolayer WS2 by magnetic proximity effect

Author

Listed:
  • Tenzin Norden

    (University at Buffalo, the State University of New York)

  • Chuan Zhao

    (University at Buffalo, the State University of New York)

  • Peiyao Zhang

    (University at Buffalo, the State University of New York)

  • Renat Sabirianov

    (University of Nebraska-Omaha)

  • Athos Petrou

    (University at Buffalo, the State University of New York)

  • Hao Zeng

    (University at Buffalo, the State University of New York)

Abstract

Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMDs) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 16 meV/T for monolayer WS2, using the proximity effect from an EuS substrate, which is enhanced by nearly two orders of magnitude from that obtained by an external magnetic field. More interestingly, a sign reversal of the valley splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for control of valley pseudospin for quantum information processing.

Suggested Citation

  • Tenzin Norden & Chuan Zhao & Peiyao Zhang & Renat Sabirianov & Athos Petrou & Hao Zeng, 2019. "Giant valley splitting in monolayer WS2 by magnetic proximity effect," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11966-4
    DOI: 10.1038/s41467-019-11966-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11966-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11966-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Cheng Gong & Peiyao Zhang & Tenzin Norden & Quanwei Li & Zhen Guo & Apoorva Chaturvedi & Arman Najafi & Shoufeng Lan & Xiaoze Liu & Yuan Wang & Shi-Jing Gong & Hao Zeng & Hua Zhang & Athos Petrou & Xi, 2023. "Ferromagnetism emerged from non-ferromagnetic atomic crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11966-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.