IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11955-7.html
   My bibliography  Save this article

Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements

Author

Listed:
  • Josh Tycko

    (Stanford University)

  • Michael Wainberg

    (Stanford University)

  • Georgi K. Marinov

    (Stanford University)

  • Oana Ursu

    (Stanford University)

  • Gaelen T. Hess

    (Stanford University)

  • Braeden K. Ego

    (Stanford University)

  • Aradhana

    (Stanford University)

  • Amy Li

    (Stanford University)

  • Alisa Truong

    (Stanford University)

  • Alexandro E. Trevino

    (Stanford University
    Stanford University)

  • Kaitlyn Spees

    (Stanford University)

  • David Yao

    (Stanford University)

  • Irene M. Kaplow

    (Stanford University
    Stanford University)

  • Peyton G. Greenside

    (Stanford University
    Stanford University School of Medicine)

  • David W. Morgens

    (Stanford University)

  • Douglas H. Phanstiel

    (Stanford University
    University of North Carolina
    University of North Carolina)

  • Michael P. Snyder

    (Stanford University)

  • Lacramioara Bintu

    (Stanford University)

  • William J. Greenleaf

    (Stanford University
    Stanford University
    Chan Zuckerberg Biohub)

  • Anshul Kundaje

    (Stanford University
    Stanford University)

  • Michael C. Bassik

    (Stanford University
    Stanford University)

Abstract

Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements.

Suggested Citation

  • Josh Tycko & Michael Wainberg & Georgi K. Marinov & Oana Ursu & Gaelen T. Hess & Braeden K. Ego & Aradhana & Amy Li & Alisa Truong & Alexandro E. Trevino & Kaitlyn Spees & David Yao & Irene M. Kaplow , 2019. "Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11955-7
    DOI: 10.1038/s41467-019-11955-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11955-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11955-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexendar R. Perez & Laura Sala & Richard K. Perez & Joana A. Vidigal, 2021. "CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Annabel K. Sangree & Audrey L. Griffith & Zsofia M. Szegletes & Priyanka Roy & Peter C. DeWeirdt & Mudra Hegde & Abby V. McGee & Ruth E. Hanna & John G. Doench, 2022. "Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Chenrui Qin & Yanhui Xiang & Jie Liu & Ruilin Zhang & Ziming Liu & Tingting Li & Zhi Sun & Xiaoyi Ouyang & Yeqing Zong & Haoqian M. Zhang & Qi Ouyang & Long Qian & Chunbo Lou, 2023. "Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11955-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.