IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11950-y.html
   My bibliography  Save this article

Identification of significant chromatin contacts from HiChIP data by FitHiChIP

Author

Listed:
  • Sourya Bhattacharyya

    (La Jolla Institute for Immunology)

  • Vivek Chandra

    (La Jolla Institute for Immunology)

  • Pandurangan Vijayanand

    (La Jolla Institute for Immunology
    University of Southampton
    University of California San Diego)

  • Ferhat Ay

    (La Jolla Institute for Immunology
    University of California San Diego)

Abstract

HiChIP/PLAC-seq is increasingly becoming popular for profiling 3D chromatin contacts among regulatory elements and for annotating functions of genetic variants. Here we describe FitHiChIP, a computational method for loop calling from HiChIP/PLAC-seq data, which jointly models the non-uniform coverage and genomic distance scaling of contact counts to compute statistical significance estimates. We also develop a technique to filter putative bystander loops that can be explained by stronger adjacent loops. Compared to existing methods, FitHiChIP performs better in recovering contacts reported by Hi-C, promoter capture Hi-C and ChIA-PET experiments and in capturing previously validated promoter-enhancer interactions. FitHiChIP loop calls are reproducible among replicates and are consistent across different experimental settings. Our work also provides a framework for differential HiChIP analysis with an option to utilize ChIP-seq data for further characterizing differential loops. Even though designed for HiChIP, FitHiChIP is also applicable to other conformation capture assays.

Suggested Citation

  • Sourya Bhattacharyya & Vivek Chandra & Pandurangan Vijayanand & Ferhat Ay, 2019. "Identification of significant chromatin contacts from HiChIP data by FitHiChIP," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11950-y
    DOI: 10.1038/s41467-019-11950-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11950-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11950-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Mark W. Youngblood & Zeynep Erson-Omay & Chang Li & Hinda Najem & Süleyman Coșkun & Evgeniya Tyrtova & Julio D. Montejo & Danielle F. Miyagishima & Tanyeri Barak & Sayoko Nishimura & Akdes Serin Harma, 2023. "Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Theodore Sakellaropoulos & Catherine Do & Guimei Jiang & Giulia Cova & Peter Meyn & Dacia Dimartino & Sitharam Ramaswami & Adriana Heguy & Aristotelis Tsirigos & Jane A. Skok, 2024. "MethNet: a robust approach to identify regulatory hubs and their distal targets from cancer data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Umut Berkay Altıntaş & Ji-Heui Seo & Claudia Giambartolomei & Dogancan Ozturan & Brad J. Fortunato & Geoffrey M. Nelson & Seth R. Goldman & Karen Adelman & Faraz Hach & Matthew L. Freedman & Nathan A., 2024. "Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11950-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.