IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11830-5.html
   My bibliography  Save this article

The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice

Author

Listed:
  • Chunbo Miao

    (Chinese Academy of Sciences
    Zhejiang A&F University)

  • Zhen Wang

    (Chinese Academy of Sciences)

  • Lin Zhang

    (Yangzhou University)

  • Juanjuan Yao

    (Chinese Academy of Sciences)

  • Kai Hua

    (Chinese Academy of Sciences)

  • Xue Liu

    (Chinese Academy of Sciences)

  • Huazhong Shi

    (Texas Tech University)

  • Jian-Kang Zhu

    (Chinese Academy of Sciences
    Purdue University)

Abstract

The widespread agricultural problem of pre-harvest sprouting (PHS) could potentially be overcome by improving seed dormancy. Here, we report that miR156, an important grain yield regulator, also controls seed dormancy in rice. We found that mutations in one MIR156 subfamily enhance seed dormancy and suppress PHS with negligible effects on shoot architecture and grain size, whereas mutations in another MIR156 subfamily modify shoot architecture and increase grain size but have minimal effects on seed dormancy. Mechanistically, mir156 mutations enhance seed dormancy by suppressing the gibberellin (GA) pathway through de-represssion of the miR156 target gene Ideal Plant Architecture 1 (IPA1), which directly regulates multiple genes in the GA pathway. These results provide an effective method to suppress PHS without compromising productivity, and will facilitate breeding elite crop varieties with ideal plant architectures.

Suggested Citation

  • Chunbo Miao & Zhen Wang & Lin Zhang & Juanjuan Yao & Kai Hua & Xue Liu & Huazhong Shi & Jian-Kang Zhu, 2019. "The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11830-5
    DOI: 10.1038/s41467-019-11830-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11830-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11830-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naihui Guo & Shengjia Tang & Yakun Wang & Wei Chen & Ruihu An & Zongliang Ren & Shikai Hu & Shaoqing Tang & Xiangjin Wei & Gaoneng Shao & Guiai Jiao & Lihong Xie & Ling Wang & Ying Chen & Fengli Zhao , 2024. "A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Fuxi Rong & Yusong Lv & Pingchuan Deng & Xia Wu & Yaqi Zhang & Erkui Yue & Yuxin Shen & Sajid Muhammad & Fangrui Ni & Hongwu Bian & Xiangjin Wei & Weijun Zhou & Peisong Hu & Liang Wu, 2024. "Switching action modes of miR408-5p mediates auxin signaling in rice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11830-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.